Computing stuff tied to the physical world

Reliable RF12 communication

In Software on Jun 5, 2009 at 00:01

I’m currently adding a reliable communications option to the RF12 driver. This will deal with two important communication errors: lost packets (the receiver did not get the packet) and lost acknowledgements (the sender doesn’t know the packet has arrived). Both involve timers and re-transmissions, something which the current driver doesn’t provide for.

The current driver API is not affected, these changes only add functions. Here is how they should be called:

Picture 3.png

There are two parts, reception and transmission. Reception occurs at unpredictable times, which is why rf12_recvDone() has to be called fairly often. It’s very quick when there is nothing to do, so calling it inside loops is ok and cheap. The receiver code also handles all acknowledgements and other events, so it must be called even if you only intend to send data out. Also, you must always end with a call to rf12_sendReply() when accepting the data, even if the reply is empty.

Transmission can be started by you whenever you want, but you can’t flood the driver with sends, you have to wait until it has finished the previous one. This is why there is a check on “rf12_todo”. If it is ≥ 0, you have to either wait and re-check until it becomes negative, or give up this send and try sending new data later on. Note that sends can slow down indefinitely, for example when the receiver is out of range or even turned off completely.

There is a lot to say about how to design your communications structure, all way beyond the scope of this post. It becomes considerably simpler if you can set up things such that dropping packets is no big deal. By sending all values each time, for example. Or by adding a sequence number such that lost packets are easily spotted. The fancy term for this is to make requests “idem-potent” – the HTTP protocol and web browsers normally work that way too, BTW.

To send data reliably, set the “ack” argument of rf12_sendData() to 1 and be prepared to accept occasional slow-downs. To send data on a best-effort basis, set it to 0.

The last important comment to make here is about buffer management. The RF12 driver only does a limited amount of buffering – this has two important implications:

With received data, you may only access the incoming packet in rf12_buf between the rf12_recvDone() and rf12_sendReply() calls. At all other times, rf12_buf, rf12_crc, and rf12_len are indeterminate.

The other implication is that you have to provide a pointer to your own buffer with data to rf12_sendData(), and this buffer must remain available and unchanged after rf12_sendData() returns. The buffer is given back, i.e. available for your re-use, when rf12_todo becomes negative again. You can use multiple buffers and send a different one each time, as long as the current buffer being sent adheres to these rules.

Limited-bandwidth wireless communication such as with the RFM12B on the 433/868/915 MHz bands is more effective at best-effort packet delivery than at getting each and every packet across with 100% reliability. The RF12 driver is small and uses few resources, but it does come with some trade-offs. With the additions described above, you’ll be able to set up a reliable data stream when needed. I’ll report here when these additions are ready for use.

  1. Hello, can you separate hardware layer and communication layer ? i work on library for TR24A radio module and i can implement your API to this module.

  2. Fixup

Comments are closed.