Some more pictures from yesterday’s puzzle…
Added a second LDR on the left and a DS18B20 1-wire temp sensor. A 4.5V @ 35mA solar cell has also been soldered in.
The sensor is a TSL230R light sensor, as Milarepa correctly commented:
It has one frequency pulse output, with two other port pins used to control sensitivity (1x/100x) and frequency divider (2x/50x). The fourth I/O pin is used as power supply for the chip, so that it can be turned off completely in sleep mode.
Here’s the whole assembly from the side:
And here the complete JeeNode (using a different solar panel which turned out to be too weak):
So what does it do? And what is it for?
Well, two things really – but I’ll be the first to admit that this isn’t truly general purpose and unlikely to be very meaningful for anyone else.
The first use is to help me take better pictures. The photos on this weblog are all taken using nothing but a white sheet of paper and plain old-fashioned daylight. Benefits are that it’s free and abundant, it needs no space for a light-box setup, and it tends to produce beautiful images.
The problem which you may have seen on this weblog, is that daylight ≠ daylight. Sometimes it’s too dark outside, and sometimes the light is too harsh. Worse still, many of the photos end up with a blueish tint. I’m having a hard time predicting this, so it seemed like a nice idea to just throw a bunch of light sensors together and try to correlate this to picture quality over a few weeks time.
The other purpose of this unit is to act as test-bed for long-term solar-powered use. That means getting the power drain down to very low levels of course. But I also added the ability to read out the voltage of the solar cell and of the battery, as well as temperature (solar cells are sensitive to that). And LDRs facing opposite directions, to try and detect sun vs. cloud cover weather info.
This seemed like an excellent project for JeeNodes and JeePlugs. Once it’s working well enough – auto-ranging the light sensitivity and such – I intend to put this up on the roof and just let it send out packets every 5 minutes or so, day and night. This will make an excellent yet non-critical test setup as well as allow me to track solar intensity over the entire year. Think solar panels…
Tomorrow I’ll post several sketches: one showing how to read out everything and report it over the serial FTDI connection, then two more to show how to turn this into a send/receive solution with two JeeNodes, and the last one showing how to get power consumption down.
Stay tuned!