Computing stuff tied to the physical world

Power tracker – software

In AVR, Software on Dec 22, 2009 at 00:01

Yesterday’s post described a small circuit to track power consumption of JeeNodes to help optimize sketches for minimal power consumption.

Let’s put that circuit to use, with a bit of software to measure actual power consumption. The basic idea is to continuously measure current and then integrate these measurements to determine the sum of all power consumption intervals, regardless of levels.

The reason for this is that we’re not really interested in current draw but in the amount of charge consumed by the JeeNode. As far as the battery is concerned, drawing 1 mA for 1 hour is the same as drawing 100 µA for 10 hours (in the ideal case, anyway). The fancy way to say this is that we need to measure Coulombs, not Amps. Or rather micro-Coulombs, i.e. µC. That’s really easy once you realize that 1 µA is the same as 1 µC per second. Or to put it differently again: 1 mAh = 3600 mC. So a 1000 mAh battery is really nothing but a 3600 C charge.

Ok, back to the problem at hand: measuring average current draw per second.

Here is a simple sketch which does all the auto-ranging and integration:

Screen shot 2009-12-19 at 19.34.25.png

It reports averaged power drain in µA/sec (the second value is the number of samples per second). The 10% correction which I had to apply in my setup could be due to a number of factors – most likely it’s due to resistor tolerances (they are all 5%).

Here’s an interesting case with the latest rooms node:

Screen shot 2009-12-19 at 20.01.21.png

As you can see, the baseline power drain is a fantastically low 56 µA/sec in this case, but once or twice a minute it goes up to 14 mA/sec for several seconds. Not sure what’s going in here – need to investigate (now that I can!).

It would be nice to automatically detect the baseline, i.e. the average low-level sleep consumption, and things like the peak current and the percentage of the total consumption caused by such peaks. Extending the software to handle this is more work.

With slightly more elaborate software, it will be possible to place the power measurement plug between the measuring JeeNode and the JeeNode under test, and then leave it alone. A 1-day or 1-week average should give an excellent estimate of battery lifetimes.